Partial Bell Polynomials and Inverse Relations

نویسنده

  • Miloud Mihoubi
چکیده

Chou, Hsu and Shiue gave some applications of Faà di Bruno’s formula for the characterization of inverse relations. In this paper, we use partial Bell polynomials and binomial-type sequence of polynomials to develop complementary inverse relations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Convolution Identities and an Inverse Relation Involving Partial Bell Polynomials

We prove an inverse relation and a family of convolution formulas involving partial Bell polynomials. Known and some presumably new combinatorial identities of convolution type are discussed. Our approach relies on an interesting multinomial formula for the binomial coefficients. The inverse relation is deduced from a parametrization of suitable identities that facilitate dealing with nested co...

متن کامل

Cardinality of Equivalence Relations

This entry provides formulae for counting the number of equivalence relations and partial equivalence relations over a finite carrier set with given cardinality. To count the number of equivalence relations, we provide bijections between equivalence relations and set partitions [4], and then transfer the main results of the two AFP entries, Cardinality of Set Partitions [1] and Spivey’s General...

متن کامل

Identities on Bell polynomials and Sheffer sequences

In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.

متن کامل

Numerical solution of nonlinear Fredholm-Volterra integral equations via Bell polynomials

In this paper, we propose and analyze an efficient matrix method based on Bell polynomials for numerically solving nonlinear Fredholm- Volterra integral equations. For this aim, first we calculate operational matrix of integration and product based on Bell polynomials. By using these matrices, nonlinear Fredholm-Volterra integral equations reduce to the system of nonlinear algebraic equations w...

متن کامل

Some combinatorial formulas for the partial r-Bell polynomials

The partial r-Bell polynomials generalize the classical partial Bell polynomials (coinciding with them when r = 0) by assigning a possibly different set of weights to the blocks containing the r smallest elements of a partition no two of which are allowed to belong to the same block. In this paper, we study the partial r-Bell polynomials from a combinatorial standpoint and derive several new fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010